

Web Interface for Reflectivity Fitting

[image: DOI]
 [https://doi.org/10.5281/zenodo.596150][image: CII Best Practices]
 [https://bestpractices.coreinfrastructure.org/projects/5378][image: Documentation Status]
 [https://web-reflectivity.readthedocs.io/en/latest/?badge=latest]This Django application provides the web interface reflectivity.sns.gov
to perform modeling of reflectivity data.
The application gives users forms to set up their model and submit fitting jobs.
To do so, it generates a python script to be executed either locally
or on a remote compute resource.
The generated script launches REFL1D [https://github.com/reflectometry/refl1d],
which does the actual minimization.

A description of reflectivity, an overview of the main features,
and a real-life example of the use of the application are
described in this article:

M. Doucet et al. SoftwareX 7 (2018) 287-293
https://doi.org/10.1016/j.softx.2018.09.001.

Please cite this article when using the web reflectivity interface.

Developer Documentation

	Release notes

	Developer Documentation
	Guide to Contributing

	Containerization

	List of Environment Variables

	External Service Dependencies

	Setting Up and Working in the Local Environment

	Use Cases for QA

	DevOps Guide

	Gitlab Ci Job Descriptions

	Code Walkthroughs

	The Job Control Layer

	Modules API

Links to Hardware provisioning and Deploy repositories

	neutrons-test-environment [https://code.ornl.gov/sns-hfir-scse/infrastructure/neutrons-test-environment/-/blob/main/ansible/reflectivity-test.yaml]

	web-reflectivity-deploy [https://code.ornl.gov/sns-hfir-scse/deployments/web-reflectivity-deploy]

Indices and tables

	Index

	Module Index

	Search Page

Release notes

v2.0.0

The development team is very happy to announce this release which focussed on modernization and security fixes.

The main purpose of this release is to address security issues with how user’s work is run on remote worker nodes.
The new method of security creates a ssh key pair that is unique to the session and deleted when either the user logs out or abandons the session (idle for 24 hours).
The other feature of the ssh key is that it is only accepted for connections from the host that created it.

Dependency changes

	python 2.7 to 3.8

	apache to nginx

	django 1.11 to 3.2

	jquery 1.72 to 3.6

	sqlite to postgress

	django-remote-submission [https://code.ornl.gov/reflectometry/django-remote-submission/]

Other modernization changes include a heavily increased test coverage (currently 76%), building python wheels, and a sphinx site [https://web-reflectivity.readthedocs.io/en/latest/] .

Developer Documentation

These pages contain the developer documentation. They are aimed at those who are modifying the
source code of the project.

Contents:

	Guide to Contributing

	Containerization

	List of Environment Variables

	External Service Dependencies

	Setting Up and Working in the Local Environment

	Use Cases for QA

	DevOps Guide

	Gitlab Ci Job Descriptions

	Code Walkthroughs

	The Job Control Layer

	Modules API

Development of the application is carried out by building and testing
the software in three different environments:

	locally at the developer’s workstation.

	at GitLab CI for automated testing.

	remotely at server reflectivity-test.ornl.gov for manual testing,
termed environment testenv.

[image: continuous integration cycle]
In all cases, building is implemented with containerization
of the application in concert with
additional containers and services
providing the necessary services to successfully run the application, such as a database.

Guide to Contributing

Contributions to this project are welcome. All contributors agree to the following:

	It is assumed that the contributor is an ORNL employee and belongs to the development team.
Thus the following instructions are specific to ORNL development team’s process.

	You have permission and any required rights to submit your contribution.

	Your contribution is provided under the license of this project and may be redistributed as such.

	All contributions to this project are public.

All contributions must be “signed off” in the commit log and by doing so you agree to the above.

Getting access to the main project

Direct commit access to the project is currently restricted to core developers.
All other contributions should be done through pull requests.

Development procedure

	A developer is assigned with a task during neutron status meeting
and changes the task’s status to In Progress.

	The developer creates a branch off next and completes the task in this branch.

	The developer creates a merge request (MR) off next.

	The developer asks for another developer as a reviewer to review the MR.
An MR can only be approved and merged by the reviewer.

	The developer changes the task’s status to Complete and closes the associated issue.

Contacting the Team

The best mechanism for a user to request a change is to contact the Reflectometry CIS.
Please email Mathieu Doucet with your request.

Please state your change request as a:

	Story for any enhancement request

	Defect for any bug fix request.

Containerization

Web Reflectivity runs in Docker containers.
The application is loosely coupled to ancillary services and easily deployable.

A quick look to file docker-compose.local.yml shows the following images to be generated:

	web runs the Web Reflectivity app. Image is built to use the host’s network.

	db runs the posgreSQL database storing Web Reflectivity data like models and fits

	redis runs the queue manager, where fitting jobs requested by the user are queued as tasks to be run later.

	nginx runs the reverse proxy engine serving Web Reflectivity to the WWW

	worker runs the fitting engine refl1D.
This image is used only when running in the developer’s workstation.

Docker Volumes

Each image mentioned above uses volumes to mount certain directories or configuration files to the appropriate system location.

Named volumes:

	web-static is used by webref and nginx and is mounted to /var/www/web_reflectivity/static

	pgdata is used by db and is mounted to /var/lib/postgresql/data

Each image will mount its component logs to /var/log.

List of Environment Variables

Deployment Configuration via Environment Variables

The values of the following variables are stored in a single GitLab environment variable of type file.

Settings in web reflectivity [https://web-reflectivity.readthedocs.io/en/latest/developer/modules/web_reflectivity.html#web-reflectivity-settings-module] can be set using the following environment variables.

NOTE: entries deemed as secrets are in bold.

APP

	VAR

	SERVICE

	DESCRIPTION

	DJANGO_SETTINGS_MODULE

	web

	Controls which settings environment to use (prod, envtest, unittest)

	DJANGO_SUPERUSER_USERNAME

	web

	

	DJANGO_SUPERUSER_PASSWORD

	web

	

	DJANGO_SUPERUSER_EMAIL

	web

	

	APP_SECRET

	web

	

	WEBREF_IP_ADDRESS

	web

	IP address of service web as seen from worker JOB_HANDLING_HOST

DATABASE

	VAR

	SERVICE

	DESCRIPTION

	DATABASE_NAME

	db, web

	Name of the Postgres database

	DATABASE_USER

	db, web

	Owner of the database

	DATABASE_PASS

	db, web

	

	DATABASE_HOST

	db, web

	

	DATABASE_PORT

	db, web

	

LIVE DATA SERVER

	VAR

	SERVICE

	DESCRIPTION

	LIVE_DATA_SERVER

	web

	URL template for retrieving data from remote server

	LIVE_DATA_SERVER_DOMAIN

	web

	

	LIVE_DATA_SERVER_PORT

	web

	

	LIVE_PLOT_SECRET_KEY

	web

	

	LIVE_DATA_API_USER

	web

	

	LIVE_DATA_API_PWD

	web

	

	LIVE_DATA_USER_UPLOAD_URL

	web

	URL template for uploading plots to remote data server

	LIVE_DATA_USER_FILES_URL

	web

	URL template for retrieving list of user files

CELERY

	VAR

	SERVICE

	DESCRIPTION

	C_FORCE_ROOT

	web

	When true Celery workers will run as root

	CELERY_LOG_LEVEL

	web

	

More details about the Celery configuration and how it is started can be
found here [https://web-reflectivity.readthedocs.io/en/latest/developer/walkthroughs/celery.html#where-does-the-whole-thing-start].

REMOTE WORKER

	VAR

	SERVICE

	DESCRIPTION

	REFL1D_JOB_DIR

	web

	Absolute path for job output.

	JOB_HANDLING_HOST

	web

	Hostname used for launching remote jobs. Can be localhost for local environments.

	JOB_HANDLING_PORT

	web

	Port to connect on remote host.

	JOB_HANDLING_INTERPRETER

	web

	Python interpreter to use for jobs submitted to JOB_HANDLING_HOST (e.g. python3)

LDAP

	VAR

	SERVICE

	DESCRIPTION

	LDAP_SERVER_URI

	web

	

	LDAP_DOMAIN_COMPONENT

	web

	

	LDAP_CERT_FILE

	web

	Path to CA certificate file

ICAT

	VAR

	SERVICE

	DESCRIPTION

	ICAT_DOMAIN

	web

	

	ICAT_PORT

	web

	

	CATALOG_URL

	web

	ONCat URL

	CATALOG_ID

	web

	

	CATALOG_SECRET

	web

	

(This page was reprocuded from https://code.ornl.gov/sns-hfir-scse/deployments/web-reflectivity-deploy/-/blob/main/docs/env.md)

External Service Dependencies

List of Dependencies:

	Gravatar

	LDAP

	Live Data Service

	NGINX

	ONCat

	PostgreSQL

	Redis

Gravatar

Gravatar is a service for providing globally unique avatars. This is used along user specific content.

LDAP

LDAP (Lightweight Directory Access Protocol), a central form of authentication.
It is required for this service to determine access level of users when requesting experiment data.
Once a user is logged in, the application will submit jobs to your compute resources on the user’s behalf, through celery.
This service is run in a dedicated server.

Live Data Service

Stores and provides live reduction data for use with REFL1D scripts generated with this application.
This service is hosted at livedata.sns.gov.

NGINX

Reverse Proxy stood in between client and service. This service is run in a local docker container.

ONCat

Provides catalog data used internally at ORNL. Used for scripts and local data processing. This is hosted at oncat.ornl.gov.

PostgreSQL

Relational database used by Django. Stores different form data submitted by the user for modeling.
This is run in a local docker container.

Redis

An in-memory data structure store, used as a distributed, in-memory key-value database, cache and message broker.
In this application it is used to send fitting jobs to the remote worker
and remove expired sessions and associated SSH keys. This is run in a local docker container.

Setting Up and Working in the Local Environment

Development of the application starts by being able to build and run Web Reflectivity
in the developer’s computer, termed the Local Environment, or just LOCAL.

The top-level Makefile contains macros (make targets) that liberates the developer
from having to remember the various terminal conda and docker commands.
Typing make help will show the list of macros with a short description.

$ make help
$ build-docker build the image for the package under src/
$ clean deletes containers, network, volumes, and images
$ conda installs, then activates conda environment webrefl with all dependencies
$ dev installs the local dev environment for the first time. Requires sudo privileges if the 'docker' group doesn't exist or if you don't belong nto such group.
$ docs create HTML docs under docs/_build/html/. Requires activation of the webrefl conda environment
$ redev reinstalls the local dev environment after the cleaning step
$ startdev invoke docker-compose to create images, instantiate containers, and start services
$ test run unit tests

Web Reflectivity is fully containerized so nothing except the docker engine and docker-compose
is needed to install in the developer’s computer in order to compose and run the software.
However, it is highly recommended to create first the conda environment containing
the dependencies and do the development work in that environment.
Command make conda will create conda environment webrfl with all needed dependencies.
In addition, it will install the src/web_reflectivity package in development mode.

Configuration

As part of the configuration setp, the developer needs to export
the following environment variables to the shell:

	LDAP_SERVER_URI

	LDAP_USER_DN_TEMPLATE

	LDAP_DOMAIN_COMPONENT

These value of these variables are secrets allowing the developer to
login to Web Reflectivity with their UCAMS account.
The developer must contact the development team to procure themselves with these variables.
A convenient place to store them is in an .envrc file at the root level of the source code.
See utility direnv [https://direnv.net/] for how .envrc files are used.
A minimalistic .envrc file would look like this:

$ export LDAP_SERVER_URI=*****
$ export LDAP_USER_DN_TEMPLATE=*****
$ export LDAP_DOMAIN_COMPONENT=*****

where the ***** are placeholders for the actual values.

Next, command make dev is the entrypoint to configuring LOCAL and starting it for the first time.

	create a “docker” UNIX group if non-existent. This requires sudo
privileges.

	add the developer’s username to the “docker” group so that the developer can
run docker commands.

	login to the code.ornl.gov container registry. You will need the
UCAMS credentials for this.

	create directories under /tmp/log/web_reflectivity/ to mount
the /var/log/ directories of each service. This allows the
developer to peruse the logs without having to log into each
container.

	compose and start all services specified in
cfg/docker-compose.localdev.yml

For details regarding configuring Docker in a Linux box, see
Docker post-installation [https://docs.docker.com/engine/install/linux-postinstall/].
Subsequent builds of the software should be not performed with make dev.

Running the Application

After Web Reflectivity starts, the developer can point the browser to localhost
and start using the service.
See the manual fit session example for usage.

	There are several ways to stop the running service:
	
	Ctrl-C will gently stop the containers, nothing more.

	docker-compose down -v will stop and remove the containers, as well as networks and volumes.

	make clean will invoke docker-compose down -v and then remove all images.

	To restart the service, one can:
	
	docker-compose up –build

	make startdev will overwrite the docker-compose.yml file with docker-compose.local.yml,
then invoke docker-compose up –build.

	make redev will invoke make clean, then make startdev

	Recreating the images is time consuming so the typical development cycle is:
	
	docker-compose down -v

	make some changes to the code

	docker-compose up –build

Notice, however, that src/ is mounted on the container running Web Reflectivity so
any changes to the python source will automatically reflect in the application. Hence, there
will be no need to stop, then restart the service for the changes to take effect.

Unit Testing

To run the unit tests, activate the webrefl conda environment.
To run all tests, invoke make test.

To run individual tests:

$ cd src
$ DJANGO_SETTINGS_MODULE='web_reflectivity.settings.unittest' pytest fitting/tests.py -k 'test_file_list'

Use Cases for QA

	A Manual Fit Session

	Fitting auto-reduced data

A Manual Fit Session

This page describes the steps one takes when fitting 1D reflectivity data on the web application, starting at
the point when one logs in the application.

After login in, click in Choose File in order to select file double_layer.txt found in directory test/data/. After
selecting the file, click in Submit in order to upload the file. The file will show up in the list of uploaded files.

[image: file double_later.txt uploaded]
Click in the link click to fit. A default initial layer structure will be shown near the bottom of the model page:

[image: default layer structure]
The default layer structure has only one layer, limited by air and Si on both sides. The solution layer structure
contains two layers with specific thickness and other properties, namely

[image: solution layer structure]
Thus, we must include an additional layer into the default initial layer structure. We use the “+” button for that
(in the below picture, enclosed in the dashed-line red circle). However, before adding a layer we must evaluate
or fit the current model. Press on the Evaluate button (in the below picture, enclosed in the dashed-line
purple circle)

[image: evaluating the model]
The evaluation prints the current model curve on top of the data. The plot is located near the top of the model page.
As one would expect, the initial model is a poor fit of the data:

[image: a poor fit]
The poor fit is of little consequence now. Let’s click in the “+” button now to add a new layer. This is the current
model with two layers:

[image: two-layer bad model]
We enter the parameters of the solution layer structure into the model:

[image: solution entered]
This should provide a model curve closely fitting the data. We’re going to create an initial guess for the fit
starting with these optimal parameters. We just distort the two thickness parameters for layers A and B. The goal is
to recover the solution thickness when we fit the model. In this case we entered initial values of 500 and 40
Angstroms for layers A and B, respectively (red circle in the below picture). Also, we removed the nearby
checkmarks, indicating these are fit parameters (purple circle in the below picture). When a parameter is unchecked,
a min and max range becomes available (range rectangle in the below picture). We have adjusted the ranges so
that our initial guesses fall right in the middle of the ranges:

[image: initial guess]
Click the Evaluate button to see how our initial guess aligns with the data. We find an “out-of-phase” fit:

[image: out-of-phase fit]
We now fit the model by clicking in the Fit button. The job is submitted to the (local or remote) work server
and fits results will be available once the fit job is finished. A message at the top of the page indicates
this is so, with a link to display the fit:

[image: fit results are ready]
After clicking in the link, we can inspect the fit to the data and the fit parameters

[image: fitted curve]
[image: fitted parameters]
We obtain thicknesses 578.3 and 42.89 (compare to given solution parameters 577.6 and 44.75).

If so desired, we can save the fit by clicking in the save model link (red circle in the below picture):

[image: save model]
A pop-up will confirm the model was saved:

[image: confirmation of model saved]
Close the pop-up by clicking in the OK button. Then, click in the show models button (red circle in the below
picture):

[image: confirmation of model saved]
The model will show at the top of the list of available models:

[image: list of available models]
Clicking in the pencil button (red circle in the picture above) will show the fit parameters:

[image: fit parameters for the selected saved model]
This finishes the manual fit session!

Fitting auto-reduced data

This page describes the steps one takes when fitting 1D reflectivity data on the web application, starting when
looking at the auto-reduced data for a particular run in the web monitor app.

Once at the web monitor, go to the page of a run that was auto-reduced, e.g.: https://monitor.sns.gov/report/ref_l/191809/

Above the plot, there’s a link to the fitting application. Click it: https://reflectivity.sns.gov/fit/ref_l/191809

[image: link to open reflectivity fitting]
You should now see the same data. The data that was shown on the web monitor is also shown on the reflectivity fitting application.

In the Layer model section, you will now be able to define a model and perform a fit. In the layer that’s called material, try entering a thickness of 725 Å and an SLD of 6.3. The uncheck the boxes for that layers thickness, SLD, and roughness. Also uncheck the Si roughness. Fitting parameters will now appears at the bottom of the page. Enter a maximum value of 1000 for the thickness, 10 for the SLD, and 15 for the roughness parameters. Then click fit.

[image: adjust parameters]
After a few seconds a message will appear to let you know the fit is done. Click that link:

[image: link to fit results]
Fit graph and optimal parameters should look like this:

[image: fit results]

DevOps Guide

Environment “testenv”

This environment allow developers and power users to run additional
testing such as automated system tests and manual tests.
One of its main purposes is to uncover bugs and defects not detected
by the CI.

One host machine acting as a GitLab runner runs the instructions
specified in the deploy job of the GitLab CI.
There’s only one specific machine allowed to pick and run the deploy job
so that environment testenv is always deployed to the same machine.
The app running in testenv is exposed to the WWW
as reflectivity-test.sns.gov.

Currently, the database in this environment is not persistent,
meaning a new deployment will erase whatever data has been stored since the
last deployment.
Also, testenv is currently listening and writing to livedata.sns.gov,
as well as listening to oncat.ornl.gov. Development of a test environment
for the web monitor will bring about test substitutes for both servers.

Database Management

We rely on Django’s manage.py for dumping the source database and loading it
into the recipient database.
Django’s manage.py allows for a fine control of what tables to dump and the command is agnostic
of the database flavor (mysql, postgresql, sqlite) for both the source and
recipient databases.

Dumping the Old Database

The database from reflectivity.sns.gov has quite a different schema than the
database of the modernized application because models for the app and its
dependencies have evolved.

Login to reflectivity.sns.gov and then:

cd /var/www/web_reflectivity/app
dumpfile=/tmp/webreflect_$(date +%F).json # e.g. /tmp/webreflect_2022-05-01.json
python manage.py dumpdata --verbosity 3 --natural-foreign --natural-primary -e contenttypes -e auth.Permission -e django_auth_ldap -e django_celery_results --indent 2 --database default --traceback > ${dumpfile}

For loading the resulting JSON file into the recipient database,
jump to Loading onto the Modernized Database.

Dumping the Modernized Database

It is assumed that the container running the web_reflectivity app, as well as
the container running the database are up and running.

The name of the container running the web_reflectivity app should be test_webref_1
if running in the TEST environment. One can make sure by listing the running containers:

$> docker container ls
CONTAINER ID MAGE COMMAND CREATED STATUS PORTS NAMES
e71b9b6c4a4e code.ornl.gov:4567/reflectometry/web_reflectivity/web_reflectivity:latest-dev /usr/bin/docker-ent… 6 hours ago Up 6 hours (healthy) 22/tcp, 8000/tcp test_webref_1

In this particular case, the name of the container is test_webref_1, and
we can use the CONTAINER ID e71b9b6c4a4e in place of this name.

Open a shell to the container running the web_reflectivity app and
execute the dumpdata make target:

$> docker exec -it test_webref_1 bash
(webrefl)$ make dumpdata # e.g. creates /tmp/webreflect_2022-05-20.json

A JSON dump file /tmp/webreflect_$(date +%F).json is generated in the container’s /tmp
directory.
An easy way to make it available to the host machine is to move this file
to directory /var/log/ because
this directory is mounted in the host machine as directory
/tmp/log/web_reflectivity/web/

Loading onto the Modernized Database

We need to make the JSON dump accessible from within the container running the app.
An easy way is to place the file in the host machine directory
/tmp/log/web_reflectivity/web/ because is bind-mounted to container’s
directory /var/log/.

Assuming we have file /tmp/log/web_reflectivity/web/webreflect_2022-05-01.json
in the host machine, we need to open a shell in the running container
servicing the application and execute the make loaddata target.

Details on how to find out the name of the running container are laid out
in the previous section Dumping the Modernized Database.

docker exec -it test_webref_1 bash
(webrefl)$ make fixturefile=/var/log/webreflect_2022-05-01.json loaddata

This will update the recipient database.
The command takes minutes to
execute because it translates the JSON file into a large set of python
objects.
These objects are in turn translated into a long list of postgres commands to be
executed on the recipient database.

Deployment for Testing

Deployment for the testing environment is handled by the
web-relectivity-deploy repo [https://code.ornl.gov/sns-hfir-scse/deployments/web-reflectivity-deploy].
For details on how to deploy, read the
Guide for the deployment to Testing Environment [https://code.ornl.gov/sns-hfir-scse/deployments/web-reflectivity-deploy/-/blob/main/docs/deploy_test.md].

Deployment in Production

This deployment is scheduled to happen after a new version of the software
is released and thoroughly tested in deployment testenv.
For details on how to deploy, read the
Guide for the deployment to Production Environment [https://code.ornl.gov/sns-hfir-scse/deployments/web-reflectivity-deploy/-/blob/main/docs/webref-prod%20steps%20to%20release.md].

Gitlab Ci Job Descriptions

This page is here to provide a description of current jobs ran on the Gitlab CI/CD pipeline.

	Job Name

	Time (Minute)

	buildtestimage

	39

	static-analysis

	5

	test

	6

	docs

	1

	userdocs

	~

	wheel

	.5

	webrefimg

	23

	deploy

	~

Images can be found at https://code.ornl.gov/rse/images

And the images for this repo are uploaded here: code.ornl.gov:4567/reflectometry/web_reflectivity/

buildtestimage

First this job performs the [func_rse_docker_cleanup](https://code.ornl.gov/rse-deployment/rse-sharables/raw/master/rse-bash-modules.sh) action,
then builds a test docker image for the package under src/
and pushes it to gitlab with the ‘latest’ tag
This is performed first so that subsequent jobs may reuse the same image and avoid unnecessary builds.

static-analysis

This job pulls the latest docker image
and runs the battery of checks normally performed by the pre-commit hook
At the time of writing this includes the following:

	trailing-whitespace

	check-docstring-first

	check-json

	check-added-large-files

	check-yaml

	debug-statements

	requirements-txt-fixer

	check-merge-conflict

	end-of-file-fixer

	sort-simple-yaml

	black

	flake8

For the an accurate list of hooks, please refer to the .pre-commit-config.yaml file

test

This job pulls the latest docker image with tag containing string buildimage.
It then performs db migrations,
runs unit tests, generating a coverage report
and finally builds the wheel to confirm it can successfully and stores it for later.

docs

This job pulls the latest docker image
and generates docs in the /docs/ folder using Sphinx

userdocs

Using a POST request, this job signals the readthedocs.org site to pull and publish docs from the latest image.

The instance for this project is located here: https://web-reflectivity.readthedocs.io/en/latest/

wheel

This job pulls the latest docker image
and publishes the wheel created during the test step using the publish_wheel.sh script
The script is just a python -m twine upload with credential checks, failing the job if data is missings.

The filename is configured in the pyproject.toml [https://code.ornl.gov/reflectometry/web_reflectivity/-/blob/next/src/pyproject.toml].
The naming convention for the generated wheel is PREFIX-VERSION(.devDISTANCE) where

	PREFIX: web-reflectivity

	VERSION: is the most recent tag given by git describe.
For developer versions this is one minor version ahead of the last release.
VERSION will be of the form MAJOR.MINOR.PATCH(rcCANDIDATE) where rcCANDIDATE is missing from a full release.

	DISTANCE: number of commits since latest git tag

An example name is web_reflectivity-1.2.0.dev507-py3-none-any.whl.
This job only executes on protected branches such as next, qa, or main

webrefimg

This job builds the production docker image for Web Reflectivity
It then pushes the image with the date appened to the tag and again with :latest-dev appended instead.
i.e. this single image will have two tags associated with it, the former being its permanent tag, and the later a temporary tag.
The temporary tag always refers to the latest version of this image.
Finally it cleans up the images locally.
This job only executes on protected branches such as next, qa, or main

deploy

This job attempts to deploy the docker image for the environment associated with the branch that trigged it.

Code Walkthroughs

These pages contain various descriptions and explanations of the code based on a particular topic/technology.

	Celery Walkthrough

Celery Walkthrough

Table of Contents

	Celery Walkthrough

	Main Ingredients

	Use of Celery in web_reflectivity

	Where does the whole thing start?

	Periodic Tasks

	Creating Tasks at Compile time

	Creating Tasks at Runtime

	Checking Executed Tasks

	One-off Tasks

	Tasks invoked as functions

Celery implements a Task queue to:

	execute instructions asynchronously

	run periodic tasks

	run cron tasks

…and much more. Celery docs at https://docs.celeryq.dev/

Celery requires a message broker* capable of “outsorcing” tasks.

Main Ingredients

	message has input data and name of the task.

	task has executing instructions.

	queue stores the messages.

	broker fetches messages from the queue and delivers them to workers (not Celery)

	worker is the task executor (thread, VM, container…)

[image: celery components]
NOTE: in web_reflectivity, the worker is a CPU thread that delegates work to an external resource, such as
the worker docker container or a computer node in the anaysis cluster.

[image: proxy worker and SSH tunnel to worker]

Use of Celery in web_reflectivity

Celery, in concert with the message broker Redis [https://redis.io/docs/], is used within app web_reflectivity for:

	send fitting jobs to the remote worker (submit_job_to_server())

	remove expired sessions and associated SSH keys (clean_expired_sessions)

Additional Celery tasks are invoked not as task to be added to the queue but as pure python functions.

	establish passwordless SSH tunnels (copy_key_to_server(), delete_key_from_server())

Where does the whole thing start?

The entry point src/docker-entrypoint.sh [https://code.ornl.gov/reflectometry/web_reflectivity/-/blob/next/src/docker-entrypoint.sh] to the container startup creates two Celery instances:

celery --app fitting.celery worker --loglevel=${CELERY_LOG_LEVEL} --logfile=${CELERY_LOG_PATH} --detach
celery --app fitting.celery beat --scheduler django_celery_beat.schedulers:DatabaseScheduler --loglevel=${CELERY_LOG_LEVEL} --logfile=${CELERY_LOG_PATH} --detach

	fitting.celery worker is the startup module

	celery worker instantiates the Task queue where new tasks can be added

	celery beat instantiates the Task scheduler to store period tasks and cron task to run at specific times.

[image: celery worker and celery beat]
Most of the startup module src/fitting/celery.py [https://code.ornl.gov/reflectometry/web_reflectivity/-/blob/next/src/fitting/celery.py] contents is boilerplate code:

app = Celery("web_reflectivity")

os.environ.setdefault("DJANGO_SETTINGS_MODULE", "web_reflectivity.settings.develop")
app.config_from_object("django.conf:settings", namespace="CELERY")

app.autodiscover_tasks()

Configuration discovery is here accomplished with parsing attribute settings of module django.conf, which
points to
src/web_reflectivity/settings/develop.py [https://code.ornl.gov/reflectometry/web_reflectivity/-/blob/next/src/web_reflectivity/settings/develop.py]
and
src/web_reflectivity/settings/base.py [https://code.ornl.gov/reflectometry/web_reflectivity/-/blob/next/src/web_reflectivity/settings/base.py].

#####
CELERY CONFIGURATION
#####
CELERY_RESULT_BACKEND = "django-db"
CELERY_BROKER_URL = "redis://redis:6379"
CELERY_TASK_SERIALIZER = "pickle"
CELERY_ACCEPT_CONTENT = ["pickle"]

Task discovery is here accomplished scanning the source code of web_reflectivity
and any of its “installed apps”.
These are other Django apps inserted as dependencies.

[image: autodiscover tasks]
For every installed app, Celery will check whether the app’s source contains a “task.py” file.
If so, it will parse the file searching for task functions.

Periodic Tasks

Celery has a
flexible scheduling for task creation [https://medium.com/the-andela-way/timed-periodic-tasks-in-celery-58c99ecf3f80]:

	happening at regular intervals

	happening at a specific time of the day every certain days of the week (crontab)

Scheduling can happen at compile time or at runtime.

Creating Tasks at Compile time

Scheduling at compile time is defined in the CELERY_BEAT_SCHEDULE setting.
In
src/web_reflectivity/settings/base.py [https://code.ornl.gov/reflectometry/web_reflectivity/-/blob/next/src/web_reflectivity/settings/base.py]

CELERY_BEAT_SCHEDULE = {
 "clean-expired-sessions": {
 "task": "users.tasks.clean_expired_sessions",
 "schedule": SESSION_COOKIE_AGE,
 },
}

task
users.tasks.clean_expired_sessions [https://code.ornl.gov/reflectometry/web_reflectivity/-/blob/next/src/users/tasks.py]
occurs every SESSION_COOKIE_AGE seconds.
It cleans browser sessions that had no activity for SESSION_COOKIE_AGE seconds or more.

@shared_task
def clean_expired_sessions() -> None:
 # ..body of the function..

The @shared_task decorator ensures the task is made available to every Celery instance (web_reflectivity has two).
Tasks to be made available to specific Celery instances require decorating the task with attribute task said
specific instance. One (hopefully) clarifying example:

Two Celery instances initialized in myapp/celery.py
app1 = Celery("web_reflectivity")
app2 = Celery("web_reflectivity")

Two tasks defined in myapp/tasks.py
from myapp.celery import app1

@app1.task
def task_specific():
 pass # specific_task is made available to app1

@shared_task
def task_general():
 pass # task_general is made available to app1 and app2

Notice that the shared task require that the Celery instances are instantiated before the myapp/task.py file
is interpreted, as well as imported in the namespace of myapp.
This is accomplished with boiler-plate code in myapp/__init__.py:

from .celery import app as celery_app
__all__ = ["celery_app"]

The same boiler-place code is in
src/fitting/__init__.py [https://code.ornl.gov/reflectometry/web_reflectivity/-/blob/next/src/fitting/__init__.py]

Creating Tasks at Runtime

Dependency django_celery_beat [https://django-celery-beat.readthedocs.io/en/latest/] stores tasks in
the app’s database and exposes them in the admin site [https://reflectivitydev.sns.gov/admin/django_celery_beat].
Besides showing them, the app admin can edit them as well as create new tasks using anyone
of the registered tasks.

The scheduler is specified when the Celery instance is created:

celery --app fitting.celery beat --scheduler django_celery_beat.schedulers:DatabaseScheduler --loglevel=${CELERY_LOG_LEVEL} --logfile=${CELERY_LOG_PATH} --detach

The vanilla scheduler stores the scheduled tasks in a separate file, more appropriate when we’re not supposed
to mess with them not schedule new tasks.

Checking Executed Tasks

Dependency django_celery_results [https://django-celery-results.readthedocs.io/en/latest/] collects pieces of
information from executed tasks (e.g. the returning value), store them in the database,
and exposes them in the admin website [https://reflectivitydev.sns.gov/admin/django_celery_results/taskresult].
Useful for debugging.

Also, print and logged messages are be redirected to log file /var/log/celery.log in the filesystem of the
container running the web service.
In web_reflectivity the directory /var/log is bind-mounted to directory
/tmp/log/web_reflectivity/web of the host machine.

One-off Tasks

Tasks to be run once in asynchronous mode are invoked with the .delay attribute

in myapp/task.py
@shared_task
def my_task(greeting, target="World"):
 print(f"{greeting}, {target}!")

in myapp/views.py
from myapp.task import my_task
queue the task for asynchronous execution with the `delay` attribute
my_task.delay("Hello") # will print "Hello, World!"

In web_reflectivity,
django_remote_submission.task.submit_job_to_server [https://code.ornl.gov/reflectometry/django-remote-submission/-/blob/next/django_remote_submission/tasks.py]
is the only task
invoked [https://code.ornl.gov/reflectometry/web_reflectivity/-/blob/next/src/fitting/view_util.py]
in this fashion.

submit_job_to_server.delay(
 job_pk=job.pk,
 key_filename=key_filename,
 username=username,
 log_policy=LogPolicy.LOG_TOTAL,
 store_results="",
 remote=(not settings.JOB_HANDLING_HOST == "localhost"),
)

Notice that the first positional argument to submit_job_to_server() is the table index in the database
storing the state for an instance of class
django_remote_submission.models.Job [https://code.ornl.gov/reflectometry/django-remote-submission/-/blob/next/django_remote_submission/models.py].

When passing information to a task:

	pass the python object if:

	you want the task to use the state of the object at task creation.

	the selected serializer (pickle) can serialize the object.

	pass the table index if:

	you want the task to use the state of the object at task execution.

	the worker has access to the database.

Tasks invoked as functions

Tasks invoked as functions run in the main thread (synchronous mode).
Functions decorated with Celery-related decorators can still be calls as pure python functions.

in myapp/task.py
@shared_task
def my_task(greeting, target="World"):
 print(f"{greeting}, {target}!")

in myapp/views.py
from myapp.task import my_task
queue the task for asynchronous execution with the `delay` attribute
my_task("Hello") # will print "Hello, World!"

In web_reflectivity,
django_remote_submission.task.copy_key_to_server [https://code.ornl.gov/reflectometry/django-remote-submission/-/blob/next/django_remote_submission/tasks.py]
and
django_remote_submission.task.delete_key_from_server [https://code.ornl.gov/reflectometry/django-remote-submission/-/blob/next/django_remote_submission/tasks.py]
are the only
tasks invoked [https://code.ornl.gov/reflectometry/web_reflectivity/-/blob/next/src/users/views.py]
in this fashion.

delete_key_from_server(
 public_key_filename=idfile.public,
 username=idfile.executor,
 password=None,
 key_filename=idfile.private,
 hostname=settings.JOB_HANDLING_HOST,
 port=settings.JOB_HANDLING_PORT,
 remote=True,
)
idfile.delete()

Notice that attributes of idfile are passed to delete_key_from_server() so it needs to run
before idfile is deleted. We can be assured if we run delete_key_from_server() on the same thread.

The Job Control Layer

SSH-Tunnel to Remote Worker

Sequence diagram showing actors’ roles (user “root” running the docker application and one person using the
application) in the step that generates temporary SSH keys to establish a tunnel to the remote worker
in charge of running the fitting calculations (usually, analysis.sns.gov)

[image: pytest configuration]

Modules API

Contents:

	fitting
	Fitting.forms

	Fitting.job_handling

	Fitting.models

	Fitting.parsing

	Fitting.simultaneous

	Fitting.view_util

	Fitting.views

	Fitting.data_server

	datahandler

	tools

	users

	web_reflectivity package
	Submodules

	web_reflectivity.settings module

	SESSION_COOKIE_AGE: int=60*60*24

	SECRET_KEY: str="UNSET_SECRET"

	INSTALLATION_DIR: str="/var/www/"

	DEBUG: bool

	LDAP_DOMAIN_COMPONENT: str

	AUTH_LDAP_SERVER_URI: str

	AUTH_LDAP_CERT_FILE: str

	DATABASES: dict

	LIVE_DATA_SERVER: str

	LIVE_DATA_SERVER_DOMAIN: str

	LIVE_DATA_SERVER_PORT:: int

	LIVE_PLOT_SECRET_KEY: str

	LIVE_DATA_API_USER: str

	LIVE_DATA_API_PWD: str

	LIVE_DATA_USER_UPLOAD_URL: str

	LIVE_DATA_USER_FILES_URL: str

	REFL1D_JOB_DIR: str="/tmp"

	JOB_HANDLING_HOST: str="localhost"

	JOB_HANDLING_PORT: int=22

	JOB_HANDLING_INTERPRETER: str="python"

	CATALOG_URL: str

	CATALOG_ID: str

	CATALOG_SECRET: str

	web_reflectivity.routing module

	web_reflectivity.urls module

	web_reflectivity.wsgi module

fitting

General fitting application

Contents:

	Fitting.forms

	Fitting.job_handling

	Fitting.models

	Fitting.parsing

	Fitting.simultaneous

	Fitting.view_util

	Fitting.views

	Fitting.data_server

Fitting.forms

Forms for web reflectivity

	
class fitting.forms.ConstraintForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, field_order=None, use_required_attribute=None, renderer=None)

	Simple form to select a data file on the user’s machine

	
property media

	Return all media required to render the widgets on this form.

	
class fitting.forms.LayerForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, instance=None, use_required_attribute=None, renderer=None)

	Reflectivity model layer

	
get_layer()

	Get layer info in a format we can send to refl1d

	
get_materials()

	C60 = SLD(name=’C60’, rho=1.3, irho=0.0)

	
get_ranges(sample_name='sample')

	sample[‘C60’].interface.range(0, 20)
sample[‘C60’].material.rho.range(0, 3)
sample[‘C60’].thickness.range(1, 300)

	
has_free_parameter()

	Check that we have a least one free parameter, otherwise
the fitter will complain.

	
info_complete()

	Return True of this layer should be used

	
property media

	Return all media required to render the widgets on this form.

	
class fitting.forms.LayerModelForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, instance=None, use_required_attribute=None, renderer=None)

	Form created from the ReflectivityLayer class

	
class Meta

	Define how we use the model to create a form

	
__weakref__

	list of weak references to the object (if defined)

	
model

	alias of ReflectivityLayer

	
clean_name()

	Refl1D doesn’t like layer names that look like equations.

	
property media

	Return all media required to render the widgets on this form.

	
class fitting.forms.ReflectivityFittingForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, instance=None, use_required_attribute=None, renderer=None)

	Model parameters, excluding layers

	
get_materials()

	C60 = SLD(name=’C60’, rho=1.3, irho=0.0)

	
get_predefined_intensity_range(delta=0.001, probe_name='probe')

	Since refl1d only fits, evaluating a model has to mean fitting in a
tiny range.

	
get_ranges(sample_name='sample', probe_name='probe')

	probe.intensity=Parameter(value=1.0,name=”unity”)
probe.background.range(1e-8,1e-5)

	
get_sample_template()

	Return a template for the sample description

	
has_free_parameter()

	Check that we have a least one free parameter, otherwise
the fitter will complain.

	
property media

	Return all media required to render the widgets on this form.

	
class fitting.forms.ReflectivityFittingModelForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, instance=None, use_required_attribute=None, renderer=None)

	Form created from the ReflectivityModel class

	
class Meta

	Define how we use the model to create a form

	
__weakref__

	list of weak references to the object (if defined)

	
model

	alias of ReflectivityModel

	
clean_back_name()

	Refl1D doesn’t like layer names that look like equations.

	
clean_front_name()

	Refl1D doesn’t like layer names that look like equations.

	
property media

	Return all media required to render the widgets on this form.

	
class fitting.forms.SimultaneousModelForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, field_order=None, use_required_attribute=None, renderer=None)

	For to let users specify data to overlay or fit together

	
property media

	Return all media required to render the widgets on this form.

	
class fitting.forms.UploadFileForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, field_order=None, use_required_attribute=None, renderer=None)

	Simple form to select a data file on the user’s machine

	
property media

	Return all media required to render the widgets on this form.

	
class fitting.forms.UserDataUpdateForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, instance=None, use_required_attribute=None, renderer=None)

	Form to update the information about an uploaded file

	
class Meta

	Defining a form for the UserData model

	
__weakref__

	list of weak references to the object (if defined)

	
model

	alias of UserData

	
property media

	Return all media required to render the widgets on this form.

Fitting.job_handling

Abstraction layer for handling fitting jobs

	
fitting.job_handling.create_model_file(data_form, layer_forms, data_file=None, ascii_data='', output_dir='/tmp', fit=True, options={}, constraints=[], template='reflectivity_model.py.template', sample_name='sample', probe_name='probe', expt_name='expt')

	Create a refl1d model file from a template

	
fitting.job_handling.assemble_data_setup(data_list)

	Write the portion of the job script related to data files

	
fitting.job_handling.assemble_job(model_script, data_script, expt_names, data_ids, options, work_dir, output_dir='/tmp')

	Write the portion of the job script related to data files

Fitting.models

Data models

	
class fitting.models.Constraint(*args, **kwargs)

	Fitting parameter constraints

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
__str__()

	Return str(self).

	
apply_constraint(fit_problem)

	Apply the constraint to a fit problem

	
get_constraint_function(alternate_name=None)

	Generate the constraint function

	
get_ranges(sample_name='sample', probe_name='probe')

	Return the constraint code for the refl1d script

	
classmethod validate_constraint(constraint_code, variables)

	Validate user-submitted constraint code.

	
class fitting.models.FitProblem(*args, **kwargs)

	Reflectivity model

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
__str__()

	Return str(self).

	
delete(*args, **kwargs)

	Delete method to clean up related objects

	
model_to_dicts()

	Return a dict with all the data values

	
show_layers()

	Useful method to return the layers as a concise string

	
class fitting.models.FitterOptions(*args, **kwargs)

	Reflectivity model

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
get_dict()

	Return an options dictionary

	
class fitting.models.ReflectivityLayer(*args, **kwargs)

	One layer of a reflectivity model

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
__str__()

	Return str(self).

	
class fitting.models.ReflectivityModel(*args, **kwargs)

	Main reflectivity parameters

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
__str__()

	Return str(self).

	
class fitting.models.SavedModelInfo(*args, **kwargs)

	Additional information attached to a saved model

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class fitting.models.SimultaneousConstraint(*args, **kwargs)

	Constraint to tie parameters from two data sets in a simultaneous fit.
#TODO: rewrite and merge this with Constraint when we are ready to write it as functions.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
classmethod create_from_encoded(fit_problem, par_to, par_from, user)

	Create a simultaneous constraint from encoded parameters

	
encode()

	Encode an object into info that can be passed to a template

	
get_constraint(sample_name='sample')

	Return the constraint code for the refl1d script

Example: sample123[‘SiOx’].material.rho = sample345[‘SiOx’].material.rho

	
class fitting.models.SimultaneousFit(*args, **kwargs)

	Top level entry for a simultaneous fit. The FitProblem referenced here
is the parent problem with which we can find the related data sets.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
__str__()

	Return str(self).

	
class fitting.models.SimultaneousModel(*args, **kwargs)

	Data sets to be addded to a FitProblem for simultaneous fitting

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
__str__()

	Return str(self).

	
class fitting.models.UserData(*args, **kwargs)

	User data information

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

Fitting.parsing

Parsing utilities for REFL1D output files.

	
fitting.parsing.refl1d.update_with_results(fit_problem, par_name, value, error)

	Update a mode with a parameter value.

	Parameters

	
	fit_problem (FitProblem) – fit problem object to update

	par_name (str) – parameter name

	value (float) – parameter value

	error (float) – parameter error

	
fitting.parsing.refl1d.find_error(layer_name, par_name, value, error_output, tolerance=0.001, pretty_print=False)

	Find the error of a parameter in the list of output parameters.
@param layer_name: name of the layer
@param par_name: name of the parameter
@param value: output value, so we can recognize the entry
@param error_output: list of fit output parameters from the DREAM output

The output parameter list should be in the format: [[parameter name, value, error], …]
The DREAM outputs are not grouped by sample/experiment, so we have to use the
parameter values to determine which is which.

Because of constraints, parameters can have any name, so key on the parameter
value to assign the errors, but don’t change the reported value in case we
incorrectly assign errors.

	
fitting.parsing.refl1d.update_model_from_dict(fit_problem, experiment, error_output=None, pretty_print=False)

	Parse a json representation of the experiment
:param FitProblem fit_problem: FitProblem-like ojbect
:param dict experiment: dictionary representation of the fit problem read from the json output
:param list error_output: list of DREAM output parameters, with errors.
:param bool pretty_print: if True, the value will be turned into a value +- error string

	
fitting.parsing.refl1d.update_model_from_json(content, fit_problem)

	Update a model described by a FitProblem object according to the contents
of a REFL1D log.

	Parameters

	
	content (str) – log contents

	fit_problem (FitProblem) – fit problem object to update

	
fitting.parsing.refl1d.update_model(content, fit_problem)

	Update a model described by a FitProblem object according to the contents
of a REFL1D log.

	Parameters

	
	content (str) – log contents

	fit_problem (FitProblem) – fit problem object to update

	
fitting.parsing.refl1d.extract_multi_data_from_log(log_content)

	Extract data block from a log. For simultaneous fits, an EXPT_START tag
precedes every block:

EXPT_START 0
REFL_START

	Parameters

	log_content (str) – string buffer of the job log

	
fitting.parsing.refl1d.extract_multi_sld_from_log(log_content)

	Extract multiple SLD profiles from a simultaneous REFL1D fit.

	Parameters

	log_content (str) – string buffer of the job log

	
fitting.parsing.refl1d.extract_multi_json_from_log(log_content)

	Extract multiple JSON blocks from a REFL1D fit log.

	
fitting.parsing.refl1d.parse_single_param(line)

	Parse a line of the refl1d DREAM output log
1 intensity 1.084(31) 1.0991 1.1000 [1.062 1.100] [1.000 1.100]
2 air rho 0.91(91)e-3 0.00062 0.00006 [0.0001 0.0017] [0.0000 0.0031]

Fitting.simultaneous

Handle multiple FitProblem objects for simultaneous fitting.

	
fitting.simultaneous.model_handling.get_simultaneous_models(request, fit_problem, setup_request=False)

	Find related models and return a list of dictionary representing them.

	Parameters

	
	request – http request object

	fit_problem (FitProblem) – FitProblem object

	setup_request (bool) – if True, the model will get set up from related fit problems

	
fitting.simultaneous.model_handling.assemble_plots(request, fit_problem, result_fitproblems=None)

	Find all that needs to be plotted for this fit problem.

	Parameters

	
	request – http request object

	fit_problem (FitProblem) – FitProblem object

	result_fitproblems (list) – list of FitProblem-like objects

	
fitting.simultaneous.model_handling.compute_asymmetry(data_1, data_2)

	Compute asymmetry between two data sets.

	Parameters

	
	data_1 – data array

	data_2 – data array

Fitting.view_util

Utilities for fitting views.

Utilities for modeling application

	
fitting.view_util.extract_ascii_from_div(html_data)

	Extract data from a plot <div>.
Only returns the first one it finds.

	Parameters

	html_data (str) – <div> string

TODO: This should be refactored. When storing data locally,
as opposed to using the external ORNL plot server, we can
simply store the data as json. This function then needs to
determine which approach to take.

	
fitting.view_util.check_permissions(request, run_id, instrument)

	Verify that the user has the permissions to access the data

	Parameters

	
	run_id (str) – run identifier (usually a number)

	instrument (str) – instrument name, or user name

	
fitting.view_util.get_fit_problem(request, instrument, data_id)

	Get the latest FitProblem object for an instrument/data pair

	Parameters

	
	data_id (str) – run identifier (usually a number)

	instrument (str) – instrument name, or user name

	
fitting.view_util.get_model_as_csv(request, instrument, data_id)

	Return an ASCII block with model information to be loaded
in third party applications.

	Parameters

	
	data_id (str) – run identifier (usually a number)

	instrument (str) – instrument name, or user name

	
fitting.view_util.get_results(request, fit_problem)

	Get the model parameters for a given fit problem

	Parameters

	fit_problem (FitProblem) – FitProblem object

	
fitting.view_util.get_plot_from_html(html_data, rq4=False, fit_problem=None)

	Process html data and return plot data

	Parameters

	
	html_data (str) – stored json for plotted data

	rq4 (bool) – if True, the plot will be in R*Q^4

	fit_problem (FitProblem) – if supplied, a theory curve will be added

	
fitting.view_util.assemble_plots(request, instrument, data_id, fit_problem, rq4=False)

	Find all that needs to be plotted for this fit problem.

	Parameters

	
	instrument (str) – instrument name, or user name

	data_id (str) – run identifier (usually a number)

	fit_problem (FitProblem) – FitProblem object

	rq4 (bool) – if True, the plot will be in R*Q^4

	
fitting.view_util.find_overlay_data(fit_problem)

	Find extra data to be over-plotted for a given fit problem.

	Parameters

	fit_problem (FitProblem) – FitProblem object

	
fitting.view_util.is_fittable(data_form, layers_form)

	Return True if a fit problem (comprised of all its forms)
is fittable or not. To be fittable, refl1d requires at least
one free parameter.

	
fitting.view_util.evaluate_model(data_form, layers_form, html_data, fit=True, user=None, run_info=None, session=None)

	Protected version of the call to refl1d

	
fitting.view_util.evaluate_simultaneous_fit(request, instrument, data_id, run_info)

	Assemble all the information for co-refinement

	
fitting.view_util.save_fit_problem(data_form, layers_form, job_object, user)

	Save the state of the model forms

	
fitting.view_util.apply_model(fit_problem, saved_model, instrument, data_id)

	Apply a saved model to a fit problem

	
fitting.view_util.model_hash(fit_problem)

	Return a secret hash for a given fit problem

	
fitting.view_util.copy_fit_problem(fit_problem, user)

	Make a duplicate copy of a FitProblem object

	
fitting.view_util.plot1d(data_list, data_names=None, x_title='', y_title='', x_log=True, y_log=True, show_dx=False)

	Produce a 1D plot
:param data_list: list of traces [[x1, y1], [x2, y2], …]
:param data_names: name for each trace, for the legend

	
fitting.view_util.parse_ascii_file(request, file_name, raw_content)

	Process an uploaded data file
:param request: http request object
:param str file_name: name of the uploaded file
:param str raw_content: content of the file

	
fitting.view_util.get_user_files(request)

	Get list of uploaded files

	Parameters

	request – http request object

	
fitting.view_util.parse_data_path(data_path)

	Parse a data path of the form <instrument>/<data>

	
fitting.view_util.reverse_model(fit_problem)

	Reverse a layer model

Fitting.views

Definition of views

	
class fitting.views.ConstraintView(**kwargs)

	View for data fitting

	
get(request, instrument, data_id, const_id=None, *args, **kwargs)

	Process GET

	
post(request, instrument, data_id, const_id=None, *args, **kwargs)

	Process POST

	
class fitting.views.FileView(**kwargs)

	Process a file request

	
form_class

	alias of UploadFileForm

	
get(request, *args, **kwargs)

	Process a GET request

	
post(request, *args, **kwargs)

	Process a POST request

	
class fitting.views.FitAppend(**kwargs)

	Append data to fit problem, usually for overlaying or simultaneous fitting.

	
get(request, instrument, data_id, *args, **kwargs)

	There is no get action, so just redirect to the fit list

	
post(request, instrument, data_id, *args, **kwargs)

	Add a data set to this fit problem

	
class fitting.views.FitListView(**kwargs)

	List of fits

	
get_context_data(**kwargs)

	Get the context for this view.

	
get_queryset()

	Return the list of items for this view.

The return value must be an iterable and may be an instance of
QuerySet in which case QuerySet specific behavior will be enabled.

	
model

	alias of FitProblem

	
class fitting.views.FitProblemDelete(**kwargs)

	View to update the refl1d options

	
get_object(queryset=None)

	Ensure that the object is owned by the user.

	
model

	alias of FitProblem

	
class fitting.views.FitterOptionsUpdate(**kwargs)

	View to update the refl1d options

	
get(request, **kwargs)

	Handle GET requests: instantiate a blank version of the form.

	
get_object(queryset=None)

	Return the object the view is displaying.

Require self.queryset and a pk or slug argument in the URLconf.
Subclasses can override this to return any object.

	
model

	alias of FitterOptions

	
class fitting.views.FitView(**kwargs)

	View for data fitting

	
get(request, instrument, data_id, *args, **kwargs)

	Process GET
:param request: request object
:param instrument: instrument name
:param data_id: data set identifier

	
post(request, instrument, data_id, *args, **kwargs)

	Process POST
:param request: request object
:param instrument: instrument name
:param data_id: data set identifier

	
class fitting.views.ModelListView(**kwargs)

	View for data fitting

#TODO: Add option to upload a Motofit model

	
get(request, *args, **kwargs)

	Process GET

	
class fitting.views.SaveModelDelete(**kwargs)

	View to update the refl1d options

	
get_object(queryset=None)

	Ensure that the object is owned by the user.

	
model

	alias of SavedModelInfo

	
class fitting.views.SaveModelUpdate(**kwargs)

	View to update the refl1d options

	
get_object(queryset=None)

	Ensure that the object is owned by the user.

	
model

	alias of SavedModelInfo

	
class fitting.views.SimultaneousView(**kwargs)

	Set up the correlated parameters between two data sets for simultaneous fitting

	
get(request, instrument, data_id, *args, **kwargs)

	Process GET request

	
post(request, instrument, data_id, *args, **kwargs)

	Process POST request

	
class fitting.views.UserDataDelete(**kwargs)

	View to delete user data

	
get_object(queryset=None)

	Ensure that the object is owned by the user.

	
model

	alias of UserData

	
class fitting.views.UpdateUserDataView(**kwargs)

	View for modifying the information about an uploaded data file.

	
get(request, instrument, data_id, *args, **kwargs)

	Show current information about a user file

	
post(request, instrument, data_id, *args, **kwargs)

	Update information

	
fitting.views.remove_constraint(request, instrument, data_id, const_id)

	Remove a constraint
:param request: request object
:param instrument: instrument name
:param data_id: data set identifier
:param const_id: pk of the constraint object to delete

	
fitting.views.private(request)

	Return the page telling the user that the data is private.

	
fitting.views.is_completed(request, job_id)

	AJAX call to know whether a job is complete.
:param job_id: pk of the Job object

	
fitting.views.download_reduced_data(request, instrument, data_id)

	Download reduced data from live data server
:param request: http request object
:param instrument: instrument name
:param run_id: run number

	
fitting.views.download_model(request, instrument, data_id)

	Download reduced data and fit data from latest fit
:param request: http request object
:param instrument: instrument name
:param run_id: run number

	
fitting.views.reverse_model(request, instrument, data_id)

	Download reduced data and fit data from latest fit
:param request: http request object
:param instrument: instrument name
:param run_id: run number

	
fitting.views.apply_model(request, instrument, data_id, pk)

	Download reduced data and fit data from latest fit
:param request: http request object
:param instrument: instrument name
:param data_id: run number
:param pk: primary key of model to apply

	
fitting.views.save_model(request, instrument, data_id)

	AJAX call to save a model

#TODO: Save constraints too.

	Parameters

	
	request – http request object

	instrument – instrument name

	run_id – run number

	
fitting.views.remove_simultaneous_model(request, pk)

	Remove a data set/model from a simultaneous fit
:param request: request object
:param pk: SimultaneousModel object id

	
fitting.views.update_simultaneous_params(request, instrument, data_id)

	Ajax call to process simultaneous fit model updates

Fitting.data_server

Data handling layer. Takes care of either storing and retrieving data locally or from a remote server.

	
fitting.data_server.data_handler.generate_key(instrument, run_id)

	Generate a secret key for a run on a given instrument

	Parameters

	
	instrument (str) – instrument name

	run_id (int) – run number

	
fitting.data_server.data_handler.append_key(input_url, instrument, run_id)

	Append a live data secret key to a url

	Parameters

	
	input_url (str) – url to modify

	instrument (str) – instrument name

	run_id (int) – run number

	
fitting.data_server.data_handler.store_user_data(request, file_name, plot)

	Store user data

	Parameters

	
	request – Django request object

	file_name (str) – name of the uploaded file

	plot (str) – user data, as a plotly json object

	
fitting.data_server.data_handler.get_plot_data_from_server(instrument, run_id, data_type='html')

	Retrieve data

	Parameters

	
	instrument (str) – instrument or user name

	run_id (int) – run id, usually the run number

	data_type (str) – type of data, always HTML but kept here for API compatibility

	
fitting.data_server.data_handler.get_user_files_from_server(request, filter_file_name=None)

	Get a list of the user’s data on the live data server and update the local database

	Parameters

	
	request – request object

	filter_file_name (str) – If this parameter is not None, we will only update the entry with that file name

datahandler

Local data handler, used for testing.
In production, one would use a data server like the one here: https://github.com/neutrons/live_data_server

	
class datahandler.models.Instrument(*args, **kwargs)

	Table of instruments

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
__str__()

	Return str(self).

	
class datahandler.models.DataRun(*args, **kwargs)

	Table of runs

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
__str__()

	Return str(self).

	
class datahandler.models.PlotData(*args, **kwargs)

	Table of plot data. This data can either be json or html

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
__str__()

	Return str(self).

tools

Convenience tools for planning and fitting reflectivity. Those tools consist of an SLD calculator
and an electrode capacity calculator for energy storage measurements.

	
class tools.views.ChargeRateView(**kwargs)

	Compute capacity and charge rates.

	
form_class

	alias of ChargeRateForm

	
get(request, *args, **kwargs)

	Process a GET request

	
post(request, *args, **kwargs)

	Process a POST request

	
class tools.forms.ChargeRateForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, field_order=None, use_required_attribute=None, renderer=None)

	Input form for the capacity calculator

	
capacity()

	Calculate capacity [micro Ah]

The charge packing refers, for instance, to the maximum x in Li_x:Si.

To test: Li_15 Si_4 -> 3579 mAh/g

	Parameters

	
	electrode – electrode composition [string]

	radius – electrode radius [cm]

	thickness – electrode thickness [nm]

	packing – charge packing

	valence_change – change in oxidation state of the carrier

	
property media

	Return all media required to render the widgets on this form.

users

Module to deal with authenticating users and verifying access

	
users.views.perform_login(request)

	Perform user authentication

	
users.views.perform_logout(request)

	Logout user, deleting temporary agent SSH keys and entry from worker’s authorized_keys

	
users.view_util.fill_template_values(request, **template_args)

	Fill the template argument items needed to populate
side bars and other satellite items on the pages.

Only the arguments common to all pages will be filled.

	
users.view_util.is_experiment_member(request, instrument, experiment)

	Determine whether a user is part of the given experiment.

	Parameters

	
	Requestrequest – request object

	instrument (str) – Instrument name

	experiment (str) – IPTS name

web_reflectivity package

Submodules

web_reflectivity.settings module

The settings are split into difference ones directed at particular usage.
They can be controlled using the DJANGO_SETTINGS_MODULE environment variable.
Each settings module makes some small changes based on particular runtime environments.
More information on django settings can be found at the django documentation site [https://docs.djangoproject.com/en/3.2/topics/settings/].

	web_reflectivity.settings.base which is, generally, the super-set of all other settings.
This should never be assigned to DJANGO_SETTINGS_MODULE.

	web_reflectivity.settings.unittest is used for running the unit tests and while building the sphinx site

	web_reflectivity.settings.develop is used for development

	web_reflectivity.settings.envtest is used for remote test environment

	web_reflectivity.settings.prod is used for production environment

General settings

SESSION_COOKIE_AGE: int=60*60*24

How long to expire abandoned sessions.
Default of one day, in seconds.
Taken from the environment variable SESSION_COOKIE_AGE

SECRET_KEY: str="UNSET_SECRET"

Taken from the environment variable APP_SECRET

INSTALLATION_DIR: str="/var/www/"

Taken from the environment variable REFL_INSTALL_DIR and converted to a pathlib.Path

DEBUG: bool

This is True for all settings except web_reflectivity.settings.prod.

Settings for LDAP

LDAP_DOMAIN_COMPONENT: str

Taken from the environment variable LDAP_DOMAIN_COMPONENT

AUTH_LDAP_SERVER_URI: str

Taken from the environment variable LDAP_SERVER_URI

AUTH_LDAP_CERT_FILE: str

Taken from the environment variable LDAP_CERT_FILE.
Failing to specify this results in not verifying certificates for the LDAP connection.

Settings for database

These are ignored for web_reflectivity.settings.unittest which is hard coded for sqlite3.

DATABASES: dict

There are 5 environment variables that are used for configuring the database connection.
Failing to specify any of these will result in a mis-configured system.
The environment variables are DATABASE_NAME, DATABASE_USER, DATABASE_PASS, DATABASE_HOST, and DATABASE_PORT.

Settings for live data server

LIVE_DATA_SERVER: str

Taken from the environment variable LIVE_DATA_SERVER

LIVE_DATA_SERVER_DOMAIN: str

Taken from the environment variable LIVE_DATA_SERVER_DOMAIN

LIVE_DATA_SERVER_PORT:: int

Taken from the environment variable LIVE_DATA_SERVER_PORT

LIVE_PLOT_SECRET_KEY: str

Taken from the environment variable LIVE_PLOT_SECRET_KEY

LIVE_DATA_API_USER: str

Taken from the environment variable LIVE_DATA_API_USER

LIVE_DATA_API_PWD: str

Taken from the environment variable LIVE_DATA_API_PWD

LIVE_DATA_USER_UPLOAD_URL: str

Taken from the environment variable LIVE_DATA_USER_UPLOAD_URL

LIVE_DATA_USER_FILES_URL: str

Taken from the environment variable LIVE_DATA_USER_FILES_URL

Settings for fitting server

REFL1D_JOB_DIR: str="/tmp"

Taken from the environment variable REFL1D_JOB_DIR and converted to a pathlib.Path

JOB_HANDLING_HOST: str="localhost"

Taken from the environment variable JOB_HANDLING_HOST

JOB_HANDLING_PORT: int=22

Taken from the environment variable JOB_HANDLING_PORT

JOB_HANDLING_INTERPRETER: str="python"

Taken from the environment variable JOB_HANDLING_INTERPRETER

Settings for OnCAT

CATALOG_URL: str

Taken from the environment variable CATALOG_URL

CATALOG_ID: str

Taken from the environment variable CATALOG_ID

CATALOG_SECRET: str

Taken from the environment variable CATALOG_SECRET

Settings for local development

Local development uses a specific local worker which needs a user configured.

TEST_REMOTE_USER: str

Taken from the environment variable TEST_USER_NAME

TEST_REMOTE_PASSWD: str

Taken from the environment variable TEST_USER_PASSWD

web_reflectivity.routing module

Not currently documented

web_reflectivity.urls module

Not currently documented

web_reflectivity.wsgi module

WSGI config for web_reflectivity project.

It exposes the WSGI callable as a module-level variable named application.

For more information on this file, see
https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/

 Python Module Index

 d |
 f |
 t |
 u |
 w

 		 	

 		
 d	

 	
 	
 datahandler	

 		 	

 		
 f	

 	[image: -]
 	
 fitting	

 	
 	
 fitting.data_server	

 	
 	
 fitting.forms	

 	
 	
 fitting.job_handling	

 	
 	
 fitting.models	

 	
 	
 fitting.parsing	

 	
 	
 fitting.simultaneous.model_handling	

 	
 	
 fitting.view_util	

 	
 	
 fitting.views	

 		 	

 		
 t	

 	
 	
 tools	

 		 	

 		
 u	

 	
 	
 users	

 		 	

 		
 w	

 	[image: -]
 	
 web_reflectivity	

 	
 	
 web_reflectivity.wsgi	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__str__() (datahandler.models.DataRun method)

 	(datahandler.models.Instrument method)

 	(datahandler.models.PlotData method)

 	(fitting.models.Constraint method)

 	(fitting.models.FitProblem method)

 	(fitting.models.ReflectivityLayer method)

 	(fitting.models.ReflectivityModel method)

 	(fitting.models.SimultaneousFit method)

 	(fitting.models.SimultaneousModel method)

 	
 	__weakref__ (fitting.forms.LayerModelForm.Meta attribute)

 	(fitting.forms.ReflectivityFittingModelForm.Meta attribute)

 	(fitting.forms.UserDataUpdateForm.Meta attribute)

A

 	
 	append_key() (in module fitting.data_server.data_handler)

 	apply_constraint() (fitting.models.Constraint method)

 	apply_model() (in module fitting.view_util)

 	(in module fitting.views)

 	
 	assemble_data_setup() (in module fitting.job_handling)

 	assemble_job() (in module fitting.job_handling)

 	assemble_plots() (in module fitting.simultaneous.model_handling)

 	(in module fitting.view_util)

C

 	
 	capacity() (tools.forms.ChargeRateForm method)

 	ChargeRateForm (class in tools.forms)

 	ChargeRateView (class in tools.views)

 	check_permissions() (in module fitting.view_util)

 	clean_back_name() (fitting.forms.ReflectivityFittingModelForm method)

 	clean_front_name() (fitting.forms.ReflectivityFittingModelForm method)

 	clean_name() (fitting.forms.LayerModelForm method)

 	compute_asymmetry() (in module fitting.simultaneous.model_handling)

 	
 	Constraint (class in fitting.models)

 	Constraint.DoesNotExist

 	Constraint.MultipleObjectsReturned

 	ConstraintForm (class in fitting.forms)

 	ConstraintView (class in fitting.views)

 	copy_fit_problem() (in module fitting.view_util)

 	create_from_encoded() (fitting.models.SimultaneousConstraint class method)

 	create_model_file() (in module fitting.job_handling)

D

 	
 	
 datahandler

 	module

 	DataRun (class in datahandler.models)

 	DataRun.DoesNotExist

 	
 	DataRun.MultipleObjectsReturned

 	delete() (fitting.models.FitProblem method)

 	download_model() (in module fitting.views)

 	download_reduced_data() (in module fitting.views)

E

 	
 	encode() (fitting.models.SimultaneousConstraint method)

 	evaluate_model() (in module fitting.view_util)

 	evaluate_simultaneous_fit() (in module fitting.view_util)

 	
 	extract_ascii_from_div() (in module fitting.view_util)

 	extract_multi_data_from_log() (in module fitting.parsing.refl1d)

 	extract_multi_json_from_log() (in module fitting.parsing.refl1d)

 	extract_multi_sld_from_log() (in module fitting.parsing.refl1d)

F

 	
 	FileView (class in fitting.views)

 	fill_template_values() (in module users.view_util)

 	find_error() (in module fitting.parsing.refl1d)

 	find_overlay_data() (in module fitting.view_util)

 	FitAppend (class in fitting.views)

 	FitListView (class in fitting.views)

 	FitProblem (class in fitting.models)

 	FitProblem.DoesNotExist

 	FitProblem.MultipleObjectsReturned

 	FitProblemDelete (class in fitting.views)

 	FitterOptions (class in fitting.models)

 	FitterOptions.DoesNotExist

 	FitterOptions.MultipleObjectsReturned

 	FitterOptionsUpdate (class in fitting.views)

 	
 fitting.data_server

 	module

 	
 	
 fitting.forms

 	module

 	
 fitting.job_handling

 	module

 	
 fitting.models

 	module

 	
 fitting.parsing

 	module

 	
 fitting.simultaneous.model_handling

 	module

 	
 fitting.view_util

 	module

 	
 fitting.views

 	module

 	FitView (class in fitting.views)

 	form_class (fitting.views.FileView attribute)

 	(tools.views.ChargeRateView attribute)

G

 	
 	generate_key() (in module fitting.data_server.data_handler)

 	get() (fitting.views.ConstraintView method)

 	(fitting.views.FileView method)

 	(fitting.views.FitAppend method)

 	(fitting.views.FitterOptionsUpdate method)

 	(fitting.views.FitView method)

 	(fitting.views.ModelListView method)

 	(fitting.views.SimultaneousView method)

 	(fitting.views.UpdateUserDataView method)

 	(tools.views.ChargeRateView method)

 	get_constraint() (fitting.models.SimultaneousConstraint method)

 	get_constraint_function() (fitting.models.Constraint method)

 	get_context_data() (fitting.views.FitListView method)

 	get_dict() (fitting.models.FitterOptions method)

 	get_fit_problem() (in module fitting.view_util)

 	get_layer() (fitting.forms.LayerForm method)

 	get_materials() (fitting.forms.LayerForm method)

 	(fitting.forms.ReflectivityFittingForm method)

 	
 	get_model_as_csv() (in module fitting.view_util)

 	get_object() (fitting.views.FitProblemDelete method)

 	(fitting.views.FitterOptionsUpdate method)

 	(fitting.views.SaveModelDelete method)

 	(fitting.views.SaveModelUpdate method)

 	(fitting.views.UserDataDelete method)

 	get_plot_data_from_server() (in module fitting.data_server.data_handler)

 	get_plot_from_html() (in module fitting.view_util)

 	get_predefined_intensity_range() (fitting.forms.ReflectivityFittingForm method)

 	get_queryset() (fitting.views.FitListView method)

 	get_ranges() (fitting.forms.LayerForm method)

 	(fitting.forms.ReflectivityFittingForm method)

 	(fitting.models.Constraint method)

 	get_results() (in module fitting.view_util)

 	get_sample_template() (fitting.forms.ReflectivityFittingForm method)

 	get_simultaneous_models() (in module fitting.simultaneous.model_handling)

 	get_user_files() (in module fitting.view_util)

 	get_user_files_from_server() (in module fitting.data_server.data_handler)

H

 	
 	has_free_parameter() (fitting.forms.LayerForm method)

 	(fitting.forms.ReflectivityFittingForm method)

I

 	
 	info_complete() (fitting.forms.LayerForm method)

 	Instrument (class in datahandler.models)

 	Instrument.DoesNotExist

 	
 	Instrument.MultipleObjectsReturned

 	is_completed() (in module fitting.views)

 	is_experiment_member() (in module users.view_util)

 	is_fittable() (in module fitting.view_util)

L

 	
 	LayerForm (class in fitting.forms)

 	
 	LayerModelForm (class in fitting.forms)

 	LayerModelForm.Meta (class in fitting.forms)

M

 	
 	media (fitting.forms.ConstraintForm property)

 	(fitting.forms.LayerForm property)

 	(fitting.forms.LayerModelForm property)

 	(fitting.forms.ReflectivityFittingForm property)

 	(fitting.forms.ReflectivityFittingModelForm property)

 	(fitting.forms.SimultaneousModelForm property)

 	(fitting.forms.UploadFileForm property)

 	(fitting.forms.UserDataUpdateForm property)

 	(tools.forms.ChargeRateForm property)

 	model (fitting.forms.LayerModelForm.Meta attribute)

 	(fitting.forms.ReflectivityFittingModelForm.Meta attribute)

 	(fitting.forms.UserDataUpdateForm.Meta attribute)

 	(fitting.views.FitListView attribute)

 	(fitting.views.FitProblemDelete attribute)

 	(fitting.views.FitterOptionsUpdate attribute)

 	(fitting.views.SaveModelDelete attribute)

 	(fitting.views.SaveModelUpdate attribute)

 	(fitting.views.UserDataDelete attribute)

 	
 	model_hash() (in module fitting.view_util)

 	model_to_dicts() (fitting.models.FitProblem method)

 	ModelListView (class in fitting.views)

 	
 module

 	datahandler

 	fitting.data_server

 	fitting.forms

 	fitting.job_handling

 	fitting.models

 	fitting.parsing

 	fitting.simultaneous.model_handling

 	fitting.view_util

 	fitting.views

 	tools

 	users

 	web_reflectivity.wsgi

P

 	
 	parse_ascii_file() (in module fitting.view_util)

 	parse_data_path() (in module fitting.view_util)

 	parse_single_param() (in module fitting.parsing.refl1d)

 	perform_login() (in module users.views)

 	perform_logout() (in module users.views)

 	plot1d() (in module fitting.view_util)

 	PlotData (class in datahandler.models)

 	PlotData.DoesNotExist

 	
 	PlotData.MultipleObjectsReturned

 	post() (fitting.views.ConstraintView method)

 	(fitting.views.FileView method)

 	(fitting.views.FitAppend method)

 	(fitting.views.FitView method)

 	(fitting.views.SimultaneousView method)

 	(fitting.views.UpdateUserDataView method)

 	(tools.views.ChargeRateView method)

 	private() (in module fitting.views)

R

 	
 	ReflectivityFittingForm (class in fitting.forms)

 	ReflectivityFittingModelForm (class in fitting.forms)

 	ReflectivityFittingModelForm.Meta (class in fitting.forms)

 	ReflectivityLayer (class in fitting.models)

 	ReflectivityLayer.DoesNotExist

 	ReflectivityLayer.MultipleObjectsReturned

 	
 	ReflectivityModel (class in fitting.models)

 	ReflectivityModel.DoesNotExist

 	ReflectivityModel.MultipleObjectsReturned

 	remove_constraint() (in module fitting.views)

 	remove_simultaneous_model() (in module fitting.views)

 	reverse_model() (in module fitting.view_util)

 	(in module fitting.views)

S

 	
 	save_fit_problem() (in module fitting.view_util)

 	save_model() (in module fitting.views)

 	SavedModelInfo (class in fitting.models)

 	SavedModelInfo.DoesNotExist

 	SavedModelInfo.MultipleObjectsReturned

 	SaveModelDelete (class in fitting.views)

 	SaveModelUpdate (class in fitting.views)

 	show_layers() (fitting.models.FitProblem method)

 	SimultaneousConstraint (class in fitting.models)

 	SimultaneousConstraint.DoesNotExist

 	
 	SimultaneousConstraint.MultipleObjectsReturned

 	SimultaneousFit (class in fitting.models)

 	SimultaneousFit.DoesNotExist

 	SimultaneousFit.MultipleObjectsReturned

 	SimultaneousModel (class in fitting.models)

 	SimultaneousModel.DoesNotExist

 	SimultaneousModel.MultipleObjectsReturned

 	SimultaneousModelForm (class in fitting.forms)

 	SimultaneousView (class in fitting.views)

 	store_user_data() (in module fitting.data_server.data_handler)

T

 	
 	
 tools

 	module

U

 	
 	update_model() (in module fitting.parsing.refl1d)

 	update_model_from_dict() (in module fitting.parsing.refl1d)

 	update_model_from_json() (in module fitting.parsing.refl1d)

 	update_simultaneous_params() (in module fitting.views)

 	update_with_results() (in module fitting.parsing.refl1d)

 	UpdateUserDataView (class in fitting.views)

 	UploadFileForm (class in fitting.forms)

 	
 	UserData (class in fitting.models)

 	UserData.DoesNotExist

 	UserData.MultipleObjectsReturned

 	UserDataDelete (class in fitting.views)

 	UserDataUpdateForm (class in fitting.forms)

 	UserDataUpdateForm.Meta (class in fitting.forms)

 	
 users

 	module

V

 	
 	validate_constraint() (fitting.models.Constraint class method)

W

 	
 	
 web_reflectivity.wsgi

 	module

Database Management

We rely on Django’s manage.py for dumping the source database and loading it
into the recipient database.
Django’s manage.py allows for a fine control of what tables to dump and the command is agnostic
of the database flavor (mysql, postgresql, sqlite) for both the source and
recipient databases.

Dumping the Old Database

The database from reflectivity.sns.gov has quite a different schema than the
database of the modernized application because models for the app and its
dependencies have evolved.

Login to reflectivity.sns.gov and then:

cd /var/www/web_reflectivity/app
dumpfile=/tmp/webreflect_$(date +%F).json # e.g. /tmp/webreflect_2022-05-01.json
python manage.py dumpdata --verbosity 3 --natural-foreign --natural-primary -e contenttypes -e auth.Permission -e django_auth_ldap -e django_celery_results --indent 2 --database default --traceback > ${dumpfile}

For loading the resulting JSON file into the recipient database,
jump to Loading onto the Modernized Database.

Dumping the Modernized Database

It is assumed that the container running the web_reflectivity app, as well as
the container running the database are up and running.

The name of the container running the web_reflectivity app should be test_webref_1
if running in the TEST environment. One can make sure by listing the running containers:

$> docker container ls
CONTAINER ID MAGE COMMAND CREATED STATUS PORTS NAMES
e71b9b6c4a4e code.ornl.gov:4567/reflectometry/web_reflectivity/web_reflectivity:latest-dev /usr/bin/docker-ent… 6 hours ago Up 6 hours (healthy) 22/tcp, 8000/tcp test_webref_1

In this particular case, the name of the container is test_webref_1, and
we can use the CONTAINER ID e71b9b6c4a4e in place of this name.

Open a shell to the container running the web_reflectivity app and
execute the dumpdata make target:

$> docker exec -it test_webref_1 bash
(webrefl)$ make dumpdata # e.g. creates /tmp/webreflect_2022-05-20.json

A JSON dump file /tmp/webreflect_$(date +%F).json is generated in the container’s /tmp
directory.
An easy way to make it available to the host machine is to move this file
to directory /var/log/ because
this directory is mounted in the host machine as directory
/tmp/log/web_reflectivity/web/

Loading onto the Modernized Database

We need to make the JSON dump accessible from within the container running the app.
An easy way is to place the file in the host machine directory
/tmp/log/web_reflectivity/web/ because is bind-mounted to container’s
directory /var/log/.

Assuming we have file /tmp/log/web_reflectivity/web/webreflect_2022-05-01.json
in the host machine, we need to open a shell in the running container
servicing the application and execute the make loaddata target.

Details on how to find out the name of the running container are laid out
in the previous section Dumping the Modernized Database.

docker exec -it test_webref_1 bash
(webrefl)$ make fixturefile=/var/log/webreflect_2022-05-01.json loaddata

This will update the recipient database.
The command takes minutes to
execute because it translates the JSON file into a large set of python
objects.
These objects are in turn translated into a long list of postgres commands to be
executed on the recipient database.

 _images/a_manual_fit_17.png
%OAK RIDGE

National Laboratory

home

Save Model Information

Layer number Name
Front air

2 B

1 A
Back Si

Reflectivity Fitting

Thickness (A) SLD (10¥/A2)
- 0.0

4289 5912

5783 9.436

- 207

Notes:

iSLD (109/A2)
0.0
0.0

Roughness (A)

1.0
9.977
1.566

_images/a_manual_fit_2.png
Neutrons scatter off the first layer on top of the following list. You can change the order of the layers by changing the layer number. The layers will be re-ordered upon submission.

L;yer number Name Thickness (A) SLD (10612 iSLD (10°61A2) Roughness (A) [+]
Front - (I :
[1000 | [matea | [s00 |8 [20 |8 [oo |@ [0 |2 s

oac Ea— :

fit

_images/a_manual_fit_15.png
%OAK RIDGE Reflectivity Fitting B8 g togous

National Laboratory
settings | tools | show files | show fits | download data | download model | reverse model | save model | plot RQ4 vsQ

home > reflectivity > jbq > 1623179

_images/a_manual_fit_16.png
Available models

nowe (25 7]

Search: |

D Name Layers Notes

Time v Actions
2462 air, A, B, Si

Jan. 17, 2022, 7:27 a.m. (=]

_images/a_manual_fit_5.png
Data

Fit

Q (1A)

_ _ |
L & L L b b
o o o o o
- - - - - - -
funnoajjex

_images/a_manual_fit_6.png
l-oﬂve' number Name Thickness (A) SLD (109/A2) iSLD (10°/A2) Roughness (A)

Front - : -

[1 | [material | [s0.0 | [20 J [0.0 | [10 J
[1000 | [material | [s0.0 | [20 | [0.0 J (1.0 J
Back T :

_images/a_manual_fit_3.png
Layer number Name Thickness (A) SLD (10°6/A2) iSLD (10"6/A2) Roughness (R)

Front air - 0.0 - -
2 B 44.75 5.912 0.0 1.0

1 A 577.6 9.436 0.0 9.977
Back Si - 2.07 - 1.566

_images/a_manual_fit_4.png
e N
L;y" i Name Thickness (A) SLD (10°6/A2) iSLD (10°6/A2) Roughness (A) "/ o)
[2000 | [material | [s0.0 | 2.0 [0.0 | 1.0 | @
Back [si - 2.07 - 5.0 RN

evaluate \m

v
A -

~— =

_images/a_manual_fit_7.png
'-o"y" number Name Thickness (A) SLD (10°6/A2) iSLD (10°6/A2) Roughness (A)

[1 | [a | [5776 | [9.436 J [0.0] [0.977 J
[2 [RE | (4475 | [5.012 | [0.0 J (10 J
- Ex— :

_images/a_manual_fit_8.png
Neutrons scatter off the first layer on top of the following list. You can change the order of the layers by changing the layer number. The layers will be re-ordered upon submission.

"o""’ number Name Thickness (A) SLD (106142 iSLD (10°9/A2) Roughness (A)

B —r -

[1 | |A [9.436 | @ |00 | [9.977 |
[2 | |B [5.012 | @ [o0 |@ (10 |

Back 207 . -

Fitting parameters [x?=52.2784583337]

Qrange:[0.0 |to[1.0 | vA

There is no constraint on this model.

Parameter Value Minimum Maximum
Front material: air
Layer: material

material thickness ~ 50.0 [400 |[600
Layer: material

material thickness ~ 50.0 [30 |50

Back material: Si

_images/a_manual_fit_12.png
L;ye' number Name Thickness (A) SLD (106/A2) iSLD (10°6/A2) Roughness (A)
[1 | [a | (5783 | O [e.436 | [0.0 | [0.977 |
[2 | & | [42.89 | O [s.9012 | [0.0 | [10 |

_images/a_manual_fit_13.png
%OAK RIDGE Reflectivity Fitting B8 g togous

National Laboratory

home > reflectivity > jbq > 1623179 settings | tools | show files | show fits | download data | download model | show models | reverse mode

_images/a_manual_fit_10.png
Fit completed.

Click here to view the
results.

_images/a_manual_fit_11.png
Data

Fit

Q (UA)

_images/a_manual_fit_14.png
Your model was saved.

Lo |

_images/a_manual_fit_9.png
Data

Fit

O (1/A)

|
P 1 b R
o © © 9 9o
I

Auanoayjay

nav.xhtml

 Table of Contents

 		
 Web Interface for Reflectivity Fitting

 		
 Release notes

 		
 Developer Documentation

 		
 Guide to Contributing

 		
 Containerization

 		
 List of Environment Variables

 		
 External Service Dependencies

 		
 Setting Up and Working in the Local Environment

 		
 Use Cases for QA

 		
 A Manual Fit Session

 		
 Fitting auto-reduced data

 		
 DevOps Guide

 		
 Gitlab Ci Job Descriptions

 		
 Code Walkthroughs

 		
 Celery Walkthrough

 		
 The Job Control Layer

 		
 Modules API

 		
 fitting

 		
 datahandler

 		
 tools

 		
 users

 		
 web_reflectivity package

_images/ssh_keys.png
User docker-root I docker application I User John Smith (ID: jhs) I Remote worker analysis.sns.gnvl

|1 start ' |
e T |
| £ 2 10g5 In with U(X)CAMMS account_|
R e e

3 create SSH key files in jroot/.ssh/ }
3 create SSH key files In froot/ssh/ |

| 4 opens SSH tunnel with jhs' credentials |

1 5 transter public key to /SNSjusersjhs/ssh/authorized_keys

! 6 execute first command remotely via SSH without password
10 etete pubic key fom SNSlusersinsssauthoized keys |

1 11 delete SSH key files from jroot/.ssh/ ! |
e on ey e o |

User docker-root I docker application I User John Smith (ID: jhs) I Remote worker analysis.sns.gov

‘ Y Y NN N N

_images/a_manual_fit_1.png
Available data

Your current list of data sets is the following:

show:[25_v]
File identifier
double_layer.txt

Tags

Actions

clicktofit] # @

Time v
Jan. 16, 2022, 2:48 p.m.

_images/start_from_web_monitor_1.png
REF_L Run 191809

home > ref_| > ipts-26010 > run 191809 live monitoring: status | runs | PVs

previous | next

Run title Si3N4_2 78995-191802-8.
Run start Feb. 14, 2022, 3:20 p.m.
Run end Feb. 14, 2022, 5:04 p.m.
Duration 6239.59619141

Total counts 288008
Proton charge 8.7975063166e+12

Data access: download plot data points { fit data

_images/devops_1.png
Bugs
Uncovered

Developer’s
Workstation

Dedicated

VM
Manual testing by Expert Users

Development & debugging work

Deployment
develop

Deployment
testenv

Automated GitLab-ClI

Testing

Continuous
Deployment

- Static analysis
- Unit testing
- Image build & storage

_images/start_from_web_monitor_4.png
Si3N4_2_78995-191802-8.

G @+ [+ - | # Tea= H
Overlay data:
—— T T — T T T
1F i ® Data
Fit
10-2_ 4
2
2 1041 4
£10
L3
2
I
-3
107 1
Bz
108 1
L A | A S S . . .
7 B8 9 2 2 3 4 5 6 7 8 9 1 2 3 a
10” 107
0 Q) 0
‘ez M
\ SLD
nf(‘ 4
&
o
o
g
w
s J
il \
A A A .

. . . .
0 100 200 300 400 500 600 700
Z(A)

Layer model

Checked parameters will be kept fixed during the fitting procedure. You can also choose a model from your saved models.

pata
Seat

Neutrons scatter off the first layer on top of the following list. You can change the order of the layers by changing the layer number. The layers will be re-ordered upon submission.

L‘;Ve’ number Name Thickness (A) SLD (109/A%) ISLD (10€1A2) Roughness (A)
[1 | [materias | [7233 | O [6.203 | O Joo | [6.225 |0 @

_images/start_from_web_monitor_2.png
Lo"y" L Name Thickness (A) SLD (10¥/A%) ISLD (10/A2) Roughness (A)]

Fom , : v

[x] [(materiar] 75 O [63 = @ [s0 =B}

P C— ol [Er—

Fitting parameters [x2=3.339]

Qrange:[0.0 Jto[10 | uA
There is no constraint on this model.
Parameter Value Minimum Maximum
Front material: air
——————————— Layer: material
material thickness ~ 723.3 (100 |[1000.0]
material SLD 6293 (10 (100 |
material roughness 6.225 (10 |[150 |

————————— Back material: Si
Si roughness 8821 [10 150 |

_images/start_from_web_monitor_3.png
Fit completed.

Click here to view the
results.

_static/file.png

_static/minus.png

_static/plus.png

